A Proof of Smale’s Conjecture
نویسنده
چکیده
Here a proof will be given by a variational method which already has been used to prove Sendov’s conjecture (s. [2]). Let n > 1 be fixed and define Fn as the class of nth degree monic complex polynomials p with p(0) = 0, p(0) 6= 0 and p(ζ) 6= 0 for all derivative zeros ζ of p. Obviously it suffices to consider polynomials p ∈ Fn in order to give a proof of Smale’s conjecture. For such p we define ρ(p) := min {
منابع مشابه
A Proof of Smale’s Mean Value Conjecture
≤ n− 1 n . Equality only occurs for p(z) = a1z + anz n with arbitrary a1, an ∈ C \ {0}. Here a proof will be given by a variational method which recently has been used in a similar way to prove Sendov’s conjecture (s. [2]). Former results and the backgrounds of both conjectures can be found in the survey article of Schmeisser [4]. Let n > 1 be fixed and define Fn as the class of nth degree moni...
متن کاملA short proof of the maximum conjecture in CR dimension one
In this paper and by means of the extant results in the Tanaka theory, we present a very short proof in the specific case of CR dimension one for Beloshapka's maximum conjecture. Accordingly, we prove that each totally nondegenerate model of CR dimension one and length >= 3 has rigidity. As a result, we observe that the group of CR automorphisms associated with each of such models contains onl...
متن کاملOn the Closed-Form Solution of a Nonlinear Difference Equation and Another Proof to Sroysang’s Conjecture
The purpose of this paper is twofold. First we derive theoretically, using appropriate transformation on x(n), the closed-form solution of the nonlinear difference equation x(n+1) = 1/(±1 + x(n)), n ∈ N_0. The form of solution of this equation, however, was first obtained in [10] but through induction principle. Then, with the solution of the above equation at hand, we prove a case ...
متن کاملOn the oriented perfect path double cover conjecture
An oriented perfect path double cover (OPPDC) of a graph $G$ is a collection of directed paths in the symmetric orientation $G_s$ of $G$ such that each arc of $G_s$ lies in exactly one of the paths and each vertex of $G$ appears just once as a beginning and just once as an end of a path. Maxov{'a} and Ne{v{s}}et{v{r}}il (Discrete Math. 276 (2004) 287-294) conjectured that ...
متن کاملPartial proof of Graham Higman's conjecture related to coset diagrams
Graham Higman has defined coset diagrams for PSL(2,ℤ). These diagrams are composed of fragments, and the fragments are further composed of two or more circuits. Q. Mushtaq has proved in 1983 that existence of a certain fragment γ of a coset diagram in a coset diagram is a polynomial f in ℤ[z]. Higman has conjectured that, the polynomials related to the fragments are monic and for a fixed degree...
متن کامل